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In this work some extremal properties of an ideal plastic flow satisfying 

Tresca’s plasticity condition are considered, These properties distinguish 

Tresca’s plasticity condition from a class of admissible plasticity con- 

ditions defined below. 

The plastic state of a body is determined by its residual strains. 

This concept presupposes an unloading process, and since the occurrence 

of a plastic state is connected with the characteristic deviation of a 

stress-strain diagram from linearity, the analysis of plastic properties 

in its simplest manifestations is contained within an analysis of the 

mechanical changes of materials during the loading process. 

Plastic flow at a point of a rigid-plastic body occurs when a certain 

stress combination at this point reaches its limiting value. Hence, the 

plasticity condition can be written as 

j (51, 02, as) = const ($1 

where ui, 02, u3 are principal stresses. 

Possible simplifications of plasticity condition are achieved to a 

considerable degree on the assumption of homogeneity of the material and 

of an ideal and isotropic character of plastic flow. 

The first assumption, in its simplest form, states that plastic flow 

is independent of a series of parameters which characterize changes in 

initial properties of a material. 

The second states that the material is non-strain-hardening. and thus 

fl) is independent of some parameters which characterize some changes of 

the material during the process of plastic flow, 

The third assumption should be divided into two parts: one concerning 

the initial isotropy of the body, and the other concerning the absence of 
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acquired anisotropy. These two properties are, essentially, independent. 

Indeed, one may assume that an initially isotropic body becomes aniso- 

tropic during the process of plastic deformation (this is supported by 

all experimental results), or that an initially anisotropic body retains 

its anisotropic character during the plastic flow. (This is analogous, 

for instance, to the theory of elastic anisotropic bodies. 1 The greatest 

simplification is evidently achieved on the assumption of the absence of 

any kind of anisotropy. Such an assumption is made in the theory of 

plasticity, which limits itself to the study of the influence of changes 

in the mechanical properties of materials during the process of loading. 

The ideal and isotropic character of plastic flow implies that the 

function f in (1) retains its form during the whole process of plastic 

flow. Moreover, the isotropy conditions require that condition (1) must be 

an invariant under some class of transformations of the arguments, in 
order to secure the equivalent role of these arguments. 

The assumption of an ideal and isotropic character of plastic flow of 

metals is in direct contradiction to the evidence of experimental invest- 

igations. These investigations invariably indicate that metals become 

anisotropic and that a considerable deviation from an ideal character of 

deformations exists during the plastic flow. In constructing the mathe- 

matical theory of plasticity, these properties of real materials are in- 

corporated in subsequent generalisations of the theory which do not allow 

for these phenomena. 

The fact that the plastic properties of materials are independent of 

hydrostatic pressure means that in the space of principal stresses ai, 

02’ 03’ condition (1) is geometrically represented by a cylinder whose 

generators are parallel to the line oi = u2 = u7. To represent the plasti- 

city condition it thus is sufficient to consider a curve which is a cross- 

section of the cylinder representing the yield surface with the plane 

ai + a* + u 7 
= 0. The curve so obtained is called the yield locus and is 

shown in Fig. 1. 

The simplest necessary properties of a yield locus are: first, it can- 

not pass through the origin; and secondly, any radius drawn from the 

origin cuts it once and once only. The necessary character of these con- 

ditions is obvious and requires no further explanation. 

The isotropic properties of materials require that the yield locus 

must be symmetrical with respect to axes oi, u2, u3 (Fig. 1). 

A considerable simplification is obtained by assuming that (1) is in- 

dependent of the change of stress sign. The mechanical meaning of this 

fact is that the material behaves similarly in tension and in compression. 

The stress sign’s being independent of the plasticity condition obviously 
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leads to the conclusion that the yield locus is symmetrical with respect 

to axes perpendicular to the cl, ~2 and 03 axes. Hence the yield locus 

consists of twelve similar arcs. 

Fig. I. 

Thus in establishing a theory of plasticity considering characteristic 

changes in the mechanical properties of a material, the following assump- 

tions are made: 

(1) 

(2) 

(31 

(4) 

(51 

(6) 

absence of elastic strains in the body (rigid-plastic behavior); 

homogeneity of properties of the material; 

absence of strain-hardening (ideal flow character); 

absence of initial and acquired anisotropy; 

absence of the influence of hydrostatic pressure on plastic pro- 

perties of the material; 

absence of differentiation between tensile and compressive pro- 

perties of the material. 

Here such factors as influence of temperature, inertia and other body 

forces, etc, are not mentioned. In short, all these assumptions so familiar 

in the theory of elasticity, are absent. 

The assumptions (2)-(6) permit substantial simplification of the yield 

condition Cl), relaxation of any of the assumptions (l)-(6) leading to a 

generalization of the theory of plasticity under consideration. 

An indeterminate form of the yield locus, and also of the stress- 

plastic-strain relationship, obviously offers considerable possibilities 
for developing different plasticity theories. It should be clearly borne 
in mind, however, that within a definite set of assumptions regarding the 

idealized properties of materials, the processes described must possess 
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properties of complete definiteness and uniqueness, and be characterized 

by extremal properties in comparison to all possible processes. 

One of the fundamental steps in the establishment of any theory of 

plasticity was made by Mises, who determined extremal properties of 

plastic flow for a plasticity condition represented in the form of a 

plastic potential. The plastic potential is understood to be a function 

of the stresses g(oij) which determined a relationship between the com- 

ponents of plastic strains. In fact it is possible to establish extremal 

properties of plastic flow only for the simplest case of this relation- 

ship, namely g I f. 

Mises’ theory asserts that for the relationship 

dEij = dh (a/ (Uij) i auij, (2) 

where t ij are components of plastic strain, the work of the stresses on 

the corresponding strain increments attains its maximum. 

If we employ vector notation, then (2) means that the direction of the 

plastic strain increment vector coincides with the direction of a normal 

to the plasticity surface. The law for plastic flow. which is determined 

by (21, is called an “associated” plastic flow rule. 

Koiter’ s generalization of Mises’ results is known as the theory of 

generalized plastic potential According to this theory the corner points 

of the plasticity surface are interpreted as limiting cases of a smooth 

surface. At the corner points the plastic-strain increment vector may 

thus take any arbitrary direction, provided that it is contained within 

the normal directions to the plasticity surface at the points lying 

arbitrarily close to the corner points. 

The local character of the extremal properties determined by the Mises 

theory should be pointed out. 

Investigations conducted by Hill, Prager, Koiter, Drucker and others 

have demonstrated that the theory of the plastic potential, including the 

generalized potential, permits a formulation of the uniqueness theorems 

and the establishment of an integral variational principle. These invest- 

igations also show that the theory of the plastic potential appears to be 
the only one acceptable for establishing the said properties of uniqueness 
and extremum of plastic flow, and it consequently appears to be a necess- 

ary logical link in developing the simplest theory of plasticity, for it 
follows that the yield locus has to be a convex curve, since otherwise 

the theory means that some solutions are indeterminate. The yield locus 

is said to be convex if it always lies on one side of the tangent at any 
arbitrary point. At the corner points the tangent may take any arbitrary 
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direction between the left-hand and right-hand tangents at such a point. 

An analytical condition of convexity of a differentiable function (1) is 

f taij’) - Oi j' 8% .h f tai j) - Oij d+ 
The relationships (2) and (3) and their generalization to the step- 

wise smooth surface permit the following to be established: if on one 

part of the surface of a rigid-ideally plastic body surface tractions, 

and on the other part displacement increments are prescribed, then the 

work of prescribed tractions along the corresponding displacement incre- 

ments attains its minimum for a real strain increment field in comparison 

to all other kinematically admissible strain increment fields. It can 

also be established that the work of the surface tractions along pre- 

scribed displacement increments is maximum for a real stress field in 

comparison to all statically admissible stress fields. 

Fig. 2. 

Note that a kinematically admissible strain increment field is deter- 

mined by a displacement increment field which satisfies prescribed bound- 

ary conditions and in which the kinematically admissible displacement 

increment discontinuities are possible. A statically admissible stress 
field is one which satisfies prescribed equilibrium equations and the 

plasticity condition, and in which statically admissible stress discon- 

tinuities are possible. 

According to the uniqueness theorems, boundary conditions determine a 
unique plastic state, etc. 

Theoretical considerations permit the construction of two polygons 

A1 . . . A6 and Bi . . . B6 such that all other symmetrical yield loci lie 

within these two polygons (Fig. 2). Nevertheless, however, there exist 
an infinite number of yield loci permitting the development of a theory 

of rigid-ideally -plastic bodies satisfying the said considerations of 
uniqueness, determinacy and extremum of the processes described. 
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The problem of determining a yield condition is here treated as a 

variational problem of selecting the process of plastic flow possessing 

certain extremum properties in comparison with all other processes deter- 

mined by admissible plasticity conditions. An admissible plasticity con- 

dition is understood to be a condition with a convex symmetrical yield 

locus lying between the hexagons in Fig. 2. 

It is easy to see that the considerations on distinguishing a true 

plasticity condition from all admissible ones are at bottom analogous to 

the Uses considerations on determinating a true law of plastic flow from 

all the possible laws of such a flow. 

We shall now establish a local theorem permitting the determination 

of a plasticity condition which is the required solution to the problem. 

Let us then accept that a true plasticity condition differs from all 

possible ones by the fact that its contribution to the work of the 

stresses along prescribed strain increments is a minimum. Let dcl, dc 2’ 

d? be the prescribed strain increments. The work done by the stresses 

is 

rlC1’ 1 a&, -; a& I- a&:* (‘t) 

or in vector notation 

rlllV / ds ) 1 Q 1 cos p 

where 4 is the angle between dr and u. The magnitude ( dc 1 is given, 

and we have to examine only the magnitude (u 1 cos 4. Clearly, if a strain 

increment vector has direction OC, noncoincident with OAi, (Fig. 3). then, 

dropping from Ai a perpendicular OD to OC. we obtain that, among all 
possible yield loci for a prescribed plastic strain increments vector 

whose direction coincides with OC. the minimum value of the work is de- 

termined by an expression 

dW -=.ldcllul (lol-~ OD) 

Obviously, OD1 cos 6 = OD (Fig. 3). 

The minimum work done by the stresses on prescribed strain increments 

is represented by a segment OE, except possibly for the points Ai. Con- 

sequently, the yield locus required is a hexagon AlA . . .A6, which re- 

presents the familiar Tresca plasticity condition, 

mnx(Ia,~~-azl, Iup (13, log- o,I)-22k:zO (k -- con&) 

The equation of an arbitrary line Ai,Ai+ 1 
2k. Hence it follows that 

can be written as ai - uj = 

dcp = 0, dej -1. dej 7: 0 

After some computations we get 
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dW = 2kdci = - 2kdcj+ 

Now consider points Ai, where 
.J~ -- 2k = csj z ok. 

It follows from this that dW= 2 k d c i. Moreover, this expression is 

independent of the curvature of the yield locus at point Ai. This con- 

cludes the proof of the ‘local’ theorem, which establishes the extremal 

properties of the Tresca plasticity condition in comparison with any 

other possible plasticity condition. 

Fig. 3. 

Now consider a theorem which establishes integral extremal properties 

of Tresca’ s plasticity condition. We will show that in an rigid-ideally - 

plastic body the effect of the surface forces Xi on prescribed displace- 
ment increments dui* is a minimum for the Tresca plasticity condition. 

Then let the stresses oi’, the strains c i’ and the surface forces Xi’ 

correspond to some admissible plasticity condition, and the stresses oi, 

the strains f . and the surface forces X. correspond to the Tresca condi- 
tion. It is nkessary to show the validity of 

n 

I X,‘du,‘ds - Xidui’ds > 0 
s 

(5) 
8 s 

Employing volume integrals, we can show that inequality (5) is 

equivalent to the inequality 

Some modifications of (6) give 
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s ai’dei’du- aideidv== Ide’I1u’jcosp’dv- jdsI(uIcosrpdl;:~ 
s s s 

0 0 ” 0 

= Ido’l(Iu’lcoscp’--ulcoscp)dv + Idc’jIuIcoscpdv-- jdo))uIcosIpdu ~0 s 5 s (7) 
tl u ” 

The inequality (7) is valid, since from the ‘local’ 

that Iu’ 1 cos c$’ > 10 1 cos 4. Moreover, the inequality 

5 
1 de’1 I u 1 cos pdu > 

s 
1 dc 11 u 1 coscp du 

” v 

theorem it follows 

is also valid, since the strain increment field dri’ is kinematically 

admissible in relationship to the stress state ui corresponding to the 

Tresca condition. 

A theorem asserting that the work of prescribed surface tractions is 

a minimum for the Tresca condition could be proved analogously. 

The theorems discussed above permit various generalizations, including 

a consideration of rigid regions, strain-hardening, etc. 

In the theory of rigid-ideally-plastic bodies two essential conditions 

are used, namely the Tresca and the Mises. Numerous investigations de- 

monstrated that the Mises condition is in closer agreement with experi- 

mental evidence than the Tresca. 

Without questioning the validity of the experimental results, we may 

state that the closer agreement of the Mises condition than the Tresca 

with the experimental evidence is to be explained by the influence of 
secondary factors bearing no relationship to the theory of rigid-ideally - 

plastic materials, but related to anisotropy, strain hardening, etc. 

Therefore, even if the theory of rigid-ideally -plastic materials based 
on the Mises plasticity condition were in general agreement with the 

evidence in practice, the agreement would be due to the fact that the Mises 

plasticity condition modifies the Tresca condition so that to some extent 

it indirectly allows for factors of nonideal aspects of real materials. 

However, any modification of the Tresca plasticity condition could at 

best claim some practical advantages and no theoretical significance at 

al 1. Incidentally, this is what Mises himself had in mind when he pro- 

posed his plasticity condition as a convenient mathematical approximation 

to the Tresca condition. In areas of plasticity where it was possible to 

achieve some definite success, however, as in the theory of torsion and 

plane strain, the Mises and Tresca conditions essentially coincide. 

In three-dimensional problems, the Mises plasticity condition led to 

insurmountable difficulties. On the other hand, it has been shown [ 11 1 
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that the application of the Tresca condition and the associated law of 

plastic flow leads to statically determinate problems, and also permits ‘the 

application, with appropriate modifications, of the whole mathematical 

apparatus developed in the theory of torsion and plane problems. 

We will make a few remarks on the development of the static theory of 

free-flowing [ granular, pulverulent 1 media. The properties of free-flow- 

ing media, in the simplest case, are determined by the relationship 

f(c1, c?. a:0 = y (a,,) (81 

where u,, is the normal pressure. In the limiting case, for $(a,) = const, 

we have f(a,, 02, 03) = fmax, which is exactly the Tresca condition. 

Theoretical considerations should obviously lead to a rigid-free-flow- 

ing medium whose motion is determined by (81. Relationship (8) could be 

considered as a “free-flowing” potential. Moreover, it is clear that the 

relationship (8) must have the form 

Any different theory will be determined by some definite form of the 

function $(u,,). Obviously, an essential object is to prove the static 

determinacy of a general problem described by relationship (91, and when 

a full limiting state exists, corresponding to the maximum freedom of 

motion of a free-flowing body [ 11 1. 

The most important problem of any further development of the theory 

of plasticity is the problem of a reasonable determination of strain- 

hardening, which is obviously connected with the strains and, in principle 

at least, can be determined as an invariant which depends in a continuous 

manner on the strains or their increments, etc). Strain-hardening can 

possibly be determined by the amount of plastic work, by the maximum or 
octahedral shear, etc. 

Evidently extremal theorems must exist which determine a true measure 

of strain-hardening and which single it out from the class of all possible 

measures. 

It is quite possible that at this new stage of development, no theory 

of plasticity can be conceived without bringing in thermodynamic relation- 

ships. Thermodynamic aspects do not appear in the theory of ideally 

plastic materials or in the theory of incompressible fluids in hydro- 

dynamics. 

At a certain stage of development in the theory of plasticity the so- 
called classical approach is incapable of supplying a description of the 

investigated processes. This situation may compel us to approach the 

problem from the point of view of the microstructure of deformations. 



1230 D.D. Ivlev 

BIBLIOGRAPHY 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

Tresca, H., Memoire sur l’e’coulement des corps solides. Men. pres. 

par div. sav. Vol. 18, 1868; Vol. 20, 1872. 

Saint-Venant, B. de., Memoire sur l’e’tablissement des equations diffe’- 
rentielles des mouvements inte’rieurs operes dans les corps solides, 

etc. J. math. pure et appl. Vol. 2. NO. 16, 1871. Sb. per. Tcoriia 

plastichnosti. Izd. innostrannoi literatury, 1948. 

Prandtl, L. , Ueber die Eindringungsfestigkeit (Haerte) plastischer 

Baustoffe und die Festigkeit von Schneiden. Z. angew. Math. Mech. 

Vol. 1, NO. 1, 1921. Sb. per. Teoriia plastichnosti. Izd. inno- 

strannoi literatury, 1948. 

Mises von. R., Hechanik der plastischen Formaenderung von Kristallen. 

Z. anger. Math. Mech. Vol. 8, 1928. 

Sokolovskii. V. V., Statika sypuchei sredy (Statics of a Free-flowing 

Medium). Akademii Nauk SSSR, 1942. 

Hill, R., (a) The Mathematical Theory of Plasticity. Oxford, 1950.1.. 

Gostekhteoretizdat, 1956; (b) On the problem of uniqueness in the 

theory of a rigid-plastic solid. I-IV. J. Mech. Ph. Solids, No. 4, 

1956; No. 1, 1956. 

Prager, W. and Hodge, J, P., Jr., Theory of Perfectly Plastic Solids. 

New York-London, 1951, hi.. Izd. innostrannoi literatury; 1956. 

Prager, W., (a) On the use of singular yield conditions and associated 

flow rules. Quart. J. Appl. Mech. Vol. 20, NO. 3, 1953; (b) The 

Theory of Plasticity: A Survey of Recent Achievements. London, 1955. 

Koiter. W. T., Stress-strain relations, uniqueness and variational 

theorems for elastic-plastic materials with a singular yield sur- 

face. Quart. J. Appl. Math. Vol. 11, NO. 3, 1953. 

Drucker, D. C., (a) A more fundamental approach to plastic stress- 

strain relations. Proc. First. CJS.Nat. C. Appl. Mech. ASME, 1951. 

(b) On uniqueness in the theory of plasticity. Quart. J. Appl. Math. 

Vol. 14, No. 1, 1956. Sb. per. Mekhanika, 4. Izd. innostrannoi 

1 iteratury. 1956. 

Ivlev, D. D., Ob obshchikh uravneniiakh teorii ideal’noi pastichnosti 

i statiki sypuchei sredy (On the general equations of the theory of 

ideal plasticity and of statics of granular [free-flowing 1 media). 

PMM Vol. 22, No. 1. 1958. 

Translated by R.M. E.-I. 


